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The GOLDEN RULEThe GOLDEN RULE

Consider a variable x,
that optimizes a function

DO NOT:DO NOT:

Consider a distribution over x,
that optimizes an expectation value

INSTEAD:INSTEAD:



The golden rule gives an underlying language  - Probability

Collectives -   for translating between many fields:

i)  Bounded rational game theory

ii)    Statistical physics (mean field theory)

iii)  Adaptive control

iv) Optimization, constrained or not, over any 
 measurable space

v) Reinforcement learning

vi) Sampling of distributions

 Especially suited to distributed applications

PROBABILITY COLLECTIVES (PC)PROBABILITY COLLECTIVES (PC)



3)3) What is distributed control, formally? What is distributed control, formally?

1)1) Review information theory Review information theory

4)4) Optimal distributed control policy Optimal distributed control policy

5)5) How to find that policy in a distributed way How to find that policy in a distributed way

ROADMAPROADMAP

2) 2) Show bounded rationality = statistical physicsShow bounded rationality = statistical physics



1) Want a quantification of how “uncertain” you are
that you will observe a value i generated from P(i).

2) Require the uncertainty at seeing the IID pair (i, i')
to equal the sum of the uncertainties for i and for i'

3) This forces the definition

               uncertainty(i)  =  -ln[P(i)]

REVIEW OF INFORMATION THEORYREVIEW OF INFORMATION THEORY



4) So expected uncertainty is the Shannon entropy

S(P)  ≡   -∑i P(i) ln[P(i)]

  • Concave over P, infinite gradient at simplex border

5) Information in P, I(P), is what’s left after the
uncertainty is removed: -S(P).

6) This allows us to formalize Occam’s razor:

Maxent: Given {EP(gi) = 0}, “most plausible” P is the P
consistent with {EP(gi) = 0} having minimal I(P)

REVIEW OF INFORMATION THEORY  -  2REVIEW OF INFORMATION THEORY  -  2
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•  Real players (human or otherwise) are bounded rational,
   due to limited computational power if nothing else.

•   Previous attempts to address this are mostly ad hoc
     models of (human) players

     -  Underlying problem of arbitrariness of those models.

• Science: Without information concerning a system, you
cannot infer anything concerning it. So ...

Inference of players’ strategies must be based on
observed/provided information.

IN THE REAL WORLD, EVERYONE ISIN THE REAL WORLD, EVERYONE IS
BOUNDED RATIONALBOUNDED RATIONAL



• Say our information is P(i), the strategies of players
other than i, and i’s expected cost.

Then the minimum information principle says it is
“most conservative” to infer that Pi minimizes

Li(P)  =  βE(hi)  -  S(P)

 where S is the Shannon entropy, and β a constant.

• Alternative: If information is the entropy of i’s mixed
strategy, predict that Pi minimizes i’s expected cost:

Again, Pi minimizes Li(P)

COMBINING INFORMATION THEORYCOMBINING INFORMATION THEORY
AND GAME THEORYAND GAME THEORY



• At Nash equilibrium, each Pi separately minimizes

 E(hi)  =  ∫dz hi(z) ∏j Pj(zj)

• Allow broader class of goals (Lagrangians) for the players

Example
i)  Each Pi separately minimizes the Lagrangian

Li(P)  =   βE(hi)  -  S(P)

for some appropriate function S (e.g., entropy ...)

   ii) β < ∞ is bounded rationality

QUANTIFYING BOUNDED RATIONALITYQUANTIFYING BOUNDED RATIONALITY



• Choose S(q) = ∑i ∫dziSi(Pi(zi)) (e.g., entropy).

Then bounded rationality is identical to conventional, full
rationality  — every player wants to minimize expected
cost. Only now there is a new cost function:

fi(z, Pi)   =   βhi(z)   -   Si(Pi(zi)) / Pi(zi)

-Si(Pi(zi)) / Pi(zi) measures the computational cost to
player i for calculating Pi(zi)

BOUNDED RATIONALITY ANDBOUNDED RATIONALITY AND
COST OF COMPUTATIONCOST OF COMPUTATION



• Jaynes showed that all statistical physics ensembles
arise from minimizing

Li(P)  =  βE(hi)  -  S(P),

with S the Shannon entropy

• Mean field theory arises if P is a product distribution;
bounded rational game theory = mean field theory (!)

Much of the mathematics of statistical physics can
    be applied to bounded rational game theory

COMBINING GAME THEORY ANDCOMBINING GAME THEORY AND
STATISTICAL PHYSICSSTATISTICAL PHYSICS



EXAMPLE: GAMES WITH VARIABLEEXAMPLE: GAMES WITH VARIABLE
NUMBERS OF PLAYERSNUMBERS OF PLAYERS

1) The Grand Canonical  Ensemble (GCE) of statistical
      physics models systems where the number of particles of 
      various types varies stochastically.

2) Use the underlying language, Probability Collectives,
    -  which here is just Jaynesian inference -  to translate
    the GCE into a game in which the number of players
    of various types can vary stochastically.

Intuition: Players with “types”  =  particles with properties



GAMES WITH VARIABLE NUMBERS OF PLAYERS - 2GAMES WITH VARIABLE NUMBERS OF PLAYERS - 2

Example 1 (microeconomics):
i)   A set of bounded rational companies,
ii)  with cost functions given by market valuations,
iii) each of which must decide how many employees
      of various types to have.

Example 2 (evolutionary game theory):
i)   A set of species,
ii)  with cost functions given by fractions of total

resources they consume,
iii) each of which must “decide” how many phenotypes
      of various types to express.
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4)4) Optimal distributed control policy Optimal distributed control policy
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ROADMAPROADMAP
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1) Control of routers in a network.
2) Control of robots working together to construct a spacestation.
3) Control of flaplets on an aircraft wing.
4) Control of signals to human teams performing a joint task.
5) Control of variables in a parallel computer algorithm to

optimize a function.

Must be adaptive (i.e., not wed to a system model) to
i) Avoid brittleness;
ii) Scale well;
iii) Be fault-tolerant;
iv) Be widely applicable, with minimal (or even no) hand-tuning.

DISTRIBUTED ADAPTIVE CONTROLDISTRIBUTED ADAPTIVE CONTROL



1) A set of N agents:   Joint move x = (x1, x2, ..., xN)

2) Since they are distributed, their joint probability is a
product distribution:

• This definition of distributed agents is adopted from
       (extensive form) noncooperative game theory.

3) Distributed control is a common payoff game - a
bounded rational (statistical physics) one.

WHAT IS DISTRIBUTED CONTROL?WHAT IS DISTRIBUTED CONTROL?

q(x)  =  ∏i qi(x i)



EXAMPLE: KSATEXAMPLE: KSAT

• x  =  {0, 1}N

• A set of many disjunctions, “clauses”, each 
involving K bits.
E.g., (x2 ∨ x6 ∨ ~x7) is a clause for K = 3

• Goal: Find a bit-string x that simultaneously 
satisfies all clauses. G(x) is  #violated clauses.

• For us, this goal becomes: find mixed strategy 
q(x) = ∏i qi(xi) tightly centered about such an x.

The canonical computationally difficult problem

EXAMPLE: KSATEXAMPLE: KSAT



ITERATIVE DISTRIBUTED CONTROLITERATIVE DISTRIBUTED CONTROL

Can do (2)→ (3) without ever explicitly specifying s

1) s is current uncertainty of what x to pick, i.e.,

uncertainty of where q(x) is concentrated.

• Early in the control process, high uncertainty.

2) Find q minimizing Eq(G) while consistent with s.

3) Reduce s. Return to (2).

4) Stop at mixed strategy q with good (low) Eq(G).



1) The central step is to “find the q that has lowest
Eq(G) while consistent with S(q) = s”.

2) So we must find the critical point of the Lagrangian

      L(q, T)  =  Eq(G) + T[s - S(q)]  ,

      i,e., find the q and T such that ∂L/∂q = ∂L/∂T = 0
    •  Deep connections with statistical physics (L is

            “free energy” in mean-field theory), economics

3) Then we reduce s; repeat (find next critical point).

  ITERATIVE DISTRIBUTED CONTROL - 2ITERATIVE DISTRIBUTED CONTROL - 2



1) S(q)   =  -∑i [bi ln(bi) + (1 - bi) ln(1 - bi)]

where bi is qi(xi = TRUE)

2) Eq(G)  =  ∑clauses j, x q(x) Kj(x)

    =  ∑clauses j, x, i ∏i qi(xi) Kj(x)

where Kj(x) = 1 iff  x violates clause j

Our algorithm:   i) Find q minimizing  Eq(G) - TS(q);

        ii) Lower T and return to (i).

EXAMPLE: KSATEXAMPLE: KSAT
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So control reduces to finding q such that ∂L/∂q = 0

1) Since the agents make their moves in a distributed
way, that q is a product distribution.

2) But they must also find that q in a distributed way.

3) There are two cases to consider:
i)  Know functional form of G.
ii) Don’t know functional form of G - must sample.

DISTRIBUTED SEARCH FOR qDISTRIBUTED SEARCH FOR q



1) Each i works to minimize L(qi, q(i)) using only partial
information of the other agents’ distribution, q(i).

2) The qi(xi) component of ∇L(q), projected onto the
space of allowed qi(xi), is

β Eq(i)
(G | xi)   +  ln(qi(xi))

—
∫dx′i [β Eq(i)

(G | xi)  + ln(qi(x′i)) ]

• The subtracted term ensures q stays normalized

MINIMIZING L(q) VIA GRADIENT DESCENTMINIMIZING L(q) VIA GRADIENT DESCENT



3) Each agent i knows its value of ln(qi(xi)).

4) Each agent i knows the Eq(i)
(G | xi) terms.

Each agent knows how it should change

its qi under gradient descent over L(q)

5) Gradient descent, even for categorical variables
(!), and done in a distributed way.

6) Similarly the Hessian can readily be estimated (for
Newton’s method), etc.

GRADIENT DESCENTGRADIENT DESCENT  - 2  - 2



1) Evaluate Eq(i)
(G | xi)  - the expected number of

violated clauses if bit i is in state xi  -  for every i, xi

2) In gradient descent, decrease each qi(xi) by

 α[Eq(i)
(G | xi) + T ln[qi(xi)]  -  constj]

where α is the stepsize, and constj is an
easy-to-evaluate normalization constant.

3) We actually have a different T for each clause,
and adaptively update all of them.

EXAMPLE: KSATEXAMPLE: KSAT



1) In adaptive control, don’t know functional form
of G(x). So use Monte Carlo:

     -  Sample G(x) repeatedly according to q;

    -   Each i independently estimates Eq(i)
(G | xi)

       for all its moves xi;

    -  Only 1 MC process, no matter how many agents

So each qi can adaptively estimate its update

ADAPTIVE DISTRIBUTED CONTROLADAPTIVE DISTRIBUTED CONTROL



i) Top plot is Lagrangian value vs. iteration;
ii) Middle plot is average (under q) number of constraint

violations;
iii) Bottom plot is mode (under q) number of constraint

violations.

EXAMPLE: KSATEXAMPLE: KSAT



CONCLUSIONCONCLUSION

1)1) Information theory - statistical inference -Information theory - statistical inference -
        shows how to quantify bounded rationalityshows how to quantify bounded rationality

2) The same mathematics underlies 2) The same mathematics underlies 
    stastistical    stastistical physics; the two are identical. physics; the two are identical.

3) That mathematics also underlies adaptive3) That mathematics also underlies adaptive
     distributed control; all three are identical.     distributed control; all three are identical.


